	duction to Molecu	lar Evolution ar	nd Bioinformatics-SE	C001-1188		dit Mode is: essments	• ON
	Test: Takehor	ne Exam 2					
Test l	oformation						
Descrip	ion						
Instruct	ons						
Multiple	Attempts Not allow	ved. This test car	n only be taken once.				
Force C	mpletion This test	can be saved an	d resumed later.				
Q	UESTION 1				2 points	Saved	
Wharela	ionship between or the toolbar, press Al	ganisms and dis _T+F10 (PC) or Al					
Wha rela For	it were/was the nam ionship between or the toolbar, press Al	ganisms and dis _T+F10 (PC) or Al \$ 3 (12pt)	covered the the third		o study the		
Wha rela For	it were/was the nam ionship between or the toolbar, press Al	ganisms and dis _T+F10 (PC) or Al \$ 3 (12pt)	covered the the third LT+FN+F10 (Mac).		o study the		

o will not suffice). or the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).		
Arial \$ 3 (12pt) \$		
Yes, they are part of a living system, and the machinery that produce infected cell - aka the virus factory - is as metabolically active as a ba capsid is the propagation unit. or No, while viruses have genetic material and can evolve, the lack othe life. Yes they are part of a living system, but that does not mean that themselves .	cterium. The virus	ļ
Path: p	Wor	rds:72
QUESTION 3	1 points	Saved
volution by natural selection requires which three things to occur?		
A. Variation among offspring, a niche, and competition for resourc	es.	
^{B.} Heredity, excess offspring, and a niche.		
• C. Excess offspring, competition for resources, and variation amon offspring.	g	
$igcar{}^{D}$. A niche, a human to naturally select the best offspring, and oxyg	gen.	
estion Completion Status:		
	2 points	Saved
QUESTION 4	2 points	
	-	
QUESTION 4 What were the names of the scientists who first proposed the Gaia hy For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).	-	

L	ovelock and Margulis			
D	athra	\\//	order2	
Click	Save and Submit to save and submit. Click Save All Answers to save all ansu	ers.		Save All Ansv
	QUESTION 5	1 points	Saved	
W	'hat is the Gaia hypothesis?			
C	A. Earth's plants control the planet's temperature by selection for flower color			
C	^{B.} All life on Earth descended from ONE common ancestor			
•	C. The unit of life is the entire Earth and the entire biosphere is alive, because no single species can exist in complete isolation. The ecosystems on the Earth are protected by negative feedback loops that help maintain homeostasis.			
C	D. Mars cooled faster than the Earth and therefore was a more habitable place for life earlier. Life arose first on Mars and traveled to Earth on meteorites			
C	E. Large glaciers and ice ages result from a runaway cold-house, where the Earth gets colder because glaciers reflect more light from the surface			
C	F. Zircon crystals in 3.8 billion year old rocks were produced by ancient life over 4 billion years ago. The zircon crystals are formed by running water and the bias in carbon isotope ratios indicates the presents of life.			
	QUESTION 6	1 points	Saved	
Н	ow might mutual aid be selected for?			_
	 A. Trick question: it cannot be selected for, because even if a stingy species is going extinct, it cannot decide to stop being stingy. B. 			

https://lms.uconn.edu/webapps/assessment/take/launch.jsp?course_ass...ent_id=_91879_1&course_id=_46664_1&content_id=_2531025_1&step=null Page 3 of 7

When cooperation results in mo community thrives and spreads	. –		
O ^{C.} When cooperation is between c each other survive leads to som	lose relatives, like siblings, helping e of your own genes being passed on		
O ^{D.} When one bird helps defends an will remember and return the fa attack.	nother bird's nest, that second bird avor when the first bird is under		
• E. _{B-D.}			
QUESTION 7		1 points	Saved
Inteins are composed of which of the	following?		
O ^{A.} Self-splicing domain			
OB. Walker motif			
OC. Nucleotide binding domain (GR	ASP)		
O ^{D.} Hydrolase domain			
O ^{E.} Helix-turn-Helix DNA binding do	omain		
○ ^{F.} Homing endonuclease domain			
O G. _{A & B}			
• H. _{A & F}			
Ol. _{A&C}			
QUESTION 8		6 points	Saved
Match the terms on the left with the o	definitions on the right		
E. 🗘 1. The process of making a	^{A.} Does Not Exist		
protein from an RNA template	B. intein		
D. 2. A molecular parasite that	C. _{extein}		
splices itself out at the RNA	D. Intron		
leve	E. Translation		
A. 🕈	F. _{tRNA}		

QUE	STION 10		1 points	Saved
0 C. a	re homologous			
	night never-the-less be homolo	gous		
	re not homologous			
	nces that do not show significa	nt similarity-		
QUE	STION 9		1 points	Saved
К.	11. Process of creating a new DNA molecule, from DNA strand			
	 10. RNA that makes up the ribosome and catalyzes protein synthesis 11. Process of creating a 			
1 . ,	9. The host protein, which is spliced back together ^{cor}	rect answer is C		
L ;	8. Part of a host gene's transcript left after RNA parasite is spliced out			
Н. (7. An RNA copy of a gene, used in the process of making proteins			
В.	6. A molecular parasite that splices itself out at the protein level			
F. (5. RNA that binds an A.A. & matches it with mRNA triplet	^{K.} replication		
U	4. The process of making RNA from DNA	J. rRNA		
	level	l. exon		
	3. A molecular parasite that splices itself out at the DNA	G. Transcription ^{H.} _{mRNA}		

undergo multiple substitutions while other sites do not undergo any

○ False		
QUESTION 11	1 points	Saved
True/False - The finding that the ribosomal protein alone is responsible for the catalysis of translation is an argument against the RNA world hypothesis.		
🔿 True		
● False		
QUESTION 12	1 points	Saved
True/False - When inteins first begin to decay they lose the DNA-binding domain first, while the protein-binding domain must stay functional or it will destroy the function of the host proteins.		
domain first, while the protein-binding domain must stay functional or it		
domain first, while the protein-binding domain must stay functional or it will destroy the function of the host proteins.		
domain first, while the protein-binding domain must stay functional or it will destroy the function of the host proteins. • ^{A.} True		
domain first, while the protein-binding domain must stay functional or it will destroy the function of the host proteins. • ^{A.} True	1 points	Saved
domain first, while the protein-binding domain must stay functional or it will destroy the function of the host proteins. • ^{A.} True • ^{B.} False	1 points	Saved
domain first, while the protein-binding domain must stay functional or it will destroy the function of the host proteins. • A. True • B. False QUESTION 13 sequences reach saturation before sequences reach saturation, so sequences can be used to look further back in	1 points	Saved
domain first, while the protein-binding domain must stay functional or it will destroy the function of the host proteins. • A. True • B. False QUESTION 13 sequences reach saturation before sequences reach saturation, so sequences can be used to look further back in time.	1 points	Saved
domain first, while the protein-binding domain must stay functional or it will destroy the function of the host proteins. • A. True • B. False • QUESTION 13 	1 points	Saved
domain first, while the protein-binding domain must stay functional or it will destroy the function of the host proteins. • A. True • B. False • UESTION 13 	1 points	Saved

The Jukes Cantor model describes the evolution of sequences. Which of the following are unrealistic assumptions that the this model makes All sites have an equal probability to undergo a substitution event. All possible transitions and transversions (in case of DNA) occur with the same frequency. Sequences divergence is not limited by saturation. The frequency of the different nucleotides is the same QUESTION 15 Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizabl y similar. True False	following are unrealistic assumptions that the this model makes All sites have an equal probability to undergo a substitution event. All possible transitions and transversions (in case of DNA) occur with the same frequency. Sequences divergence is not limited by saturation. The frequency of the different nucleotides is the same QUESTION 15 Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizably similar. True	QUESTION 14	1 points	Saved
 All possible transitions and transversions (in case of DNA) occur with the same frequency. Sequences divergence is not limited by saturation. The frequency of the different nucleotides is the same QUESTION 15 Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizabl y similar. True 	 All possible transitions and transversions (in case of DNA) occur with the same frequency. Sequences divergence is not limited by saturation. The frequency of the different nucleotides is the same QUESTION 15 Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizabl y similar. True 			
 same frequency. Sequences divergence is not limited by saturation. The frequency of the different nucleotides is the same QUESTION 15 Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizably similar. True 	 same frequency. Sequences divergence is not limited by saturation. The frequency of the different nucleotides is the same QUESTION 15 Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizabl y similar. True 	All sites have an equal probability to undergo a substitution event.		
The frequency of the different nucleotides is the same QUESTION 15 1 points Saved Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizabl y similar. Image: Saved True True	The frequency of the different nucleotides is the same QUESTION 15 1 points Saved Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizably similar. I points Saved True True I points I points I points	•		
QUESTION 15 1 points Saved Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizably similar. Image: Saved Image: True Image: True Image: Saved	QUESTION 15 1 points Saved Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizably similar. Saved Image: True Image: True Image: True	Sequences divergence is not limited by saturation.		
Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizably similar.	Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizably similar.	The frequency of the different nucleotides is the same		
Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizably similar.	Among Site Rate Variation (the fact that some sites in a sequence undergo substitution with a lower frequency) keeps divergent sequences recognizably similar.			
substitution with a lower frequency) keeps divergent sequences recognizabl y similar. True	substitution with a lower frequency) keeps divergent sequences recognizabl y similar. True 	QUESTION 15	1 points	Saved
<u> </u>	<u> </u>	substitution with a lower frequency) keeps divergent sequences recognizabl		
○ False	O False	• True		
		◯ False		